APT 3.0 dependency solver

An orthodox approach to dependency solving, leading to a SAT solver
comparable to DPLL.

Julian Andres Klode

Canonical Ltd

Contents

Introduction

Definitions

Introduction

Definitions

Facts

Let

o V be the set of versions in the apt cache (literals)

e 7 C V be the set of installed versions

e M C 7 be the set of manually installed versions

o A =7\ M be the set of automatically installed versions

e Dy Cc{D1V...VD, | Dy,...,D, €V}
« CyCc{C|CeV}

denote the dependencies and conflicts of V' € V. These correspond to the formulas:
VDlv...vD,and V — =C.

(TODO: Optional dependencies)

Let |Dy V...V D,| = n represent the number of choices in a given “or group”.

Solver state

For depth 7 € N, and step j € N:
Let

« needs;; C V denote the set of versions that shall be installed

o rejects;; C'V denote the set of versions that shall not be installed

o wants;j C V denote the set of versions that we want installed later (optional
dependencies)

o likes;; C V denote the set of versions that are also suggested by packages (more
optional)

Let allversions(V') denote the ordered set of all (allowed for install) versions of the
package that V is a version of.

Let work;; C {V — D | D € DV} denote the work queue of unsatisfied dependencies.

Let needsgy = rejectsgy = wantsgy = likesgo = 0.

Iteration

Let the symbol L determine termination of the solver (mostly fatal), and T denote
termination of that level.

€ ifVd € w: d € rejects;;
needs; 11 — needs;; if 3d € w : d € needs;; (already installed)
’ needs;; Ud if 3d € w: d = {w} (single choice)
T otherwise
1L if needs; j11 = L
rejects; j 1 =T if needs; j11 =T
rejects;; U{d € Cq} otherwise

	Introduction
	Definitions

