
APT 3.0 dependency solver
An orthodox approach to dependency solving, leading to a SAT solver

comparable to DPLL.

Julian Andres Klode

Canonical Ltd

Contents

Introduction 1

Definitions 1

Introduction

Definitions

Facts

Let

• V be the set of versions in the apt cache (literals)
• I ⊂ V be the set of installed versions
• M ⊂ I be the set of manually installed versions
• A = I \ M be the set of automatically installed versions

Let

• DV ⊂ {D1 ∨ . . . ∨ Dn | D1, . . . , Dn ∈ V}
• CV ⊂ {C | C ∈ V}

1

denote the dependencies and conflicts of V ∈ V. These correspond to the formulas:
V → D1 ∨ . . . ∨ Dn and V → ¬C.

(TODO: Optional dependencies)

Let |D1 ∨ . . . ∨ Dn| = n represent the number of choices in a given “or group”.

Solver state

For depth i ∈ N, and step j ∈ N:

Let

• needsij ⊂ V denote the set of versions that shall be installed
• rejectsij ⊂ V denote the set of versions that shall not be installed
• wantsij ⊂ V denote the set of versions that we want installed later (optional

dependencies)
• likesij ⊂ V denote the set of versions that are also suggested by packages (more

optional)

Let allversions(V) denote the ordered set of all (allowed for install) versions of the
package that V is a version of.

Let workij ⊂ {V → D | D ∈ DV } denote the work queue of unsatisfied dependencies.

Let needs00 = rejects00 = wants00 = likes00 = ∅.

Iteration

Let the symbol ⊥ determine termination of the solver (mostly fatal), and ⊤ denote
termination of that level.

needsi,j+1 =


⊥ if ∀d ∈ w : d ∈ rejectsij

needsij if ∃d ∈ w : d ∈ needsij (already installed)
needsij ∪ d if ∃d ∈ w : d = {w} (single choice)
⊤ otherwise

rejectsi,j+1 =


⊥ if needsi,j+1 = ⊥
⊤ if needsi,j+1 = ⊤
rejectsij ∪ {d ∈ Cd} otherwise

2

	Introduction
	Definitions

