
APT 3.0 dependency solver
An orthodox approach to dependency solving, leading to a SAT solver

comparable to DPLL.

Julian Andres Klode

APT Developer
Ubuntu Foundations @ Canonical Ltd

Contents

Introduction 1

Algorithm 5

Evaluation 6

Conclusion 6

Introduction

APT is the high-level package manager used in Ubuntu and Debian. It’s job is to
install software packaged in the .deb format, currently about 80 000 packages.

Historically, since its inception about 30 years ago, APT has been using an ad-hoc two
solver approach to solve dependencies:

The first solver follows the dependency graph recursively, marking dependencies for
install and conflicts for removal. There is no separation between the input to the solver
and the state of the solver itself.

The second solver iteratively resolves any conflicts that remain between the choices
following from the first solver using heuristics.

Having grown over 30 years in an ad-hoc fashion, the solver is not trivial to maintain,
seemingly simple changes can cause problems (years) later. Particular issues are:

1

1. If a package depends on foo=1 and we install foo=2 instead, the package is being
removed. Even if it is manually installed and foo is automatically installed.

2. Unsatisfiability is not always nicely explained

We intend to replace that ad-hoc dual solver approach with a methodical approach
which, starting from the set of manually installed packages minus any packages that
should be removed, calculates a final set of packages that shall be installed, using
backtracking to handle conflicts.

Expected behavior from APT solvers

APT’s solver is reasonably predictable in most cases as it is a greedy algorithm, a new
solver should behave reasonably close to the existing solver that it does not work in
ways that are unexpected.

The Mancoosi project (TBD: bib) and others employed general purpose optimization
problem solvers to the space of dependency solving, given certain optimization goals
such as “minimize the number of packages removed” and “minimize the number of
changes made”. While these resulted in “optimal” solutions, such solutions were not
always the expected ones.

Case 1: The order of dependencies matters

For example, a certain desktop environment had a search engine with multiple storage
backends. APT’s greedy solver picked the first backend in the list, resulting in the
prefered backend being installed, whereas alternative APT solvers from the Mancoosi
project picked the less performant sqlite backend because it caused fewer packages to
be installed.

This points to one of the most interesting differences in Debian packaging: If a package
depends on A | B, the options are not equal. We should always install the first
installable option unless another one has already been marked for install.

Overview of the new approach

Ignoring optional dependencies for now, the solver maintains two sets: ‘needs’ and
‘rejects’. The ‘needs’ set determines the versions to be installed, the ‘rejects’ set
determines the versions to not be installed. Versions not in either set are undecided.

In addition to those sets, the solver maintains a work queue of dependencies that need
to be resolved, these dependencies are essentially represented as two fields: the version
having the dependency, and all versions that can satisfy the dependency.

2

The working queue is a priority queue: We process items with less choices before items
with more choices. This effectively yields us unit propagation for more or less free, any
dependencies with exactly one solution will be solved first.

Consider the packages A depending on X or Y, and B depending on Y. Installing both
of them has two valid solutions: ABXY and ABX. To start the solver we enqueue the
items [A] and [B], the solver now processes the following steps:

1. Add A to the needs set, enqueue A depends X or Y
2. Add B to the needs set, enqueue B depends Y (at the front, because it only has

1 choice)
3. Process B depends Y (it has 1 choice) by marking Y and enqueuing it’s depen-

dencies
4. . . . Potentially process further dependency chains from Y with less than two

solutions . . .
5. Finally get to the A depends X or Y, see that Y is already in the needs set, and

finish.

If we instead processed the items in the order they were added for example, we would
have had to make a choice between X and Y and then either install all packages or
backtrack if we ended up with a conflict.

Conflicts

When we process an item and decide to install a given choice, we iterate over all its
Conflicts and add them to the rejects set. For example, given an install of A conflicts
X, we first add A to the needs set, then add X to the conflicts set, and finally enqueue
any dependencies of A.

Conflicts hence do not remove manually installed packages, but only remove automati-
cally installed packages and prevent the automatic installation of new packages.

An exception can be made at the start of the solver for the purpose of dist-upgrades:
If there is a strong chain from a package to be installed that Conflicts and Replaces
a package that was previously manually installed, that package may be considered
automatically installed again and those not to be removed.

Overall this is the strongest difference from apt’s previous approach to solving: The
classic APT solvers would happily remove a manually installed package with a Depends:
foo (= 1) if you replace foo=1 with foo=2.

3

Optional dependencies

We extend the solver design with two additional sets ‘wants’ and ‘likes’ which collect
the ‘Recommends’ and ‘Suggests’ of installed packages.

When choices need to be made, we will first try the choices that are in the ‘wants’ set,
then we try the choices in the ‘suggests’ set.

Automatically installed packages

The solver does not try to keep automatically installed packages on the system, they
will remain by the nature of dependencies. To aid in dependency solving, the solver
will, similarly to optional dependencies first consult the set of automatically installed
packages before it tries other choices.

Backtracking

When solving dependencies we could have picked choices that end up conflicting with
dependencies in the package. For example, if A depends X | Y and X depends Z,
and Z conflicts A, if we chose to install X we end up with a conflict.

Such a conflict can be resolved by means of backtracking. For backtracking we introduce
a depth counter and record for each decision the depth at which it was made. Then
when we reach a conflict we go mark the conflict, and go back up one genernation.

In the example above, we would

0. Mark
1. Increase the depth counter to 1
2. Mark X for install by A at depth 1
3. Install Z by X at depth 1
4. Find out that Z has a conflicts with A
5. Decrease the depth counter to 0
6. Set Z as rejected at depth 0
7. Set X as rejected at depth 0 (following the recorded reason for installing Z)
8. Remove all other decisions of depth = 1
9. See A depends X | Y again, note that X is rejected and try Y.

4

Algorithm

Facts

Let

• V be the set of versions in the apt cache (literals)
• I ⊂ V be the set of installed versions
• M ⊂ I be the set of manually installed versions
• A = I \ M be the set of automatically installed versions

Let

• DV ⊂ {D1 ∨ . . . ∨ Dn | D1, . . . , Dn ∈ V}
• CV ⊂ {C | C ∈ V}

denote the dependencies and conflicts of V ∈ V. These correspond to the formulas:
V → D1 ∨ . . . ∨ Dn and V → ¬C.

(TODO: Optional dependencies)

Let |D1 ∨ . . . ∨ Dn| = n represent the number of choices in a given “or group”.

Solver state

For depth i ∈ N, and step j ∈ N:

Let

• needsij ⊂ V denote the set of versions that shall be installed
• rejectsij ⊂ V denote the set of versions that shall not be installed
• wantsij ⊂ V denote the set of versions that we want installed later (optional

dependencies)
• likesij ⊂ V denote the set of versions that are also suggested by packages (more

optional)

Let allversions(V) denote the ordered set of all (allowed for install) versions of the
package that V is a version of.

Let workij ⊂ {V → D | D ∈ DV } denote the work queue of unsatisfied dependencies.

Let needs00 = rejects00 = wants00 = likes00 = ∅.

5

Iteration

Let the symbol ⊥ determine termination of the solver (mostly fatal), and ⊤ denote
termination of that level.

needsi,j+1 =

⊥ if ∀d ∈ w : d ∈ rejectsij

needsij if ∃d ∈ w : d ∈ needsij (already installed)
needsij ∪ d if ∃d ∈ w : d = {w} (single choice)
⊤ otherwise

rejectsi,j+1 =

⊥ if needsi,j+1 = ⊥
⊤ if needsi,j+1 = ⊤
rejectsij ∪ {d ∈ Cd} otherwise

Evaluation

Conclusion

6

	Introduction
	Algorithm
	Evaluation
	Conclusion

